ERRATA

In "Heat, Mass and Momentum Transfer Analogies for Fully-Developed Turbulent Flow of Power-Law Fluids in Circular Tubes" by W. B. Krantz and D. T. Wasan [6, 1360 (1971)], Equation (36) should

$$I(n, N_{Re}) = -2.42 \ln \left\{ \left(\frac{3n+1}{8n} \right) \right.$$

$$[N_{Re} \left(\sqrt{f/2} \right)^{2-n_8n-1}]^{1/n} + 3.63$$

$$+ 0.984 \sqrt{2/f}$$

All computations and conclusions in this paper were based on the correct form of $I(n, N_{Re})$ given above.

William B. Krantz

In "Flow of Viscoelastic Fluids through a Rectangular Duct" by C. D. Han [17, No. 6, 1418 (1971)], Equations (9) to (12), (15) to (16), (19) to (20), (22) to (23), (25) to (29), (39) to (40), and (46) to (47) should be corrected as shown helow:

$$\tau_{xx} + \frac{2\lambda_1}{3} (v_{z,x}\tau_{zx} + v_{z,y}\tau_{zy})$$

$$= \frac{2\eta_0\lambda_2}{3} [(v_{z,y})^2 + (v_{z,x})^2] \quad (9)$$

$$\tau_{yy} + \frac{2\lambda_1}{3} (v_{z,y}\tau_{zy} + v_{z,x}\tau_{zx})$$

$$= \frac{2\eta_0\lambda_2}{3} [(v_{z,x})^2 + (v_{z,y})^2] \quad (10)$$

$$\tau_{xy}=0 \tag{11}$$

$$\tau_{zz} - \frac{4\lambda_1}{3} (v_{z,x}\tau_{zx} + v_{z,y}\tau_{zy}) = -\frac{4\eta_0\lambda_2}{3} [(v_{z,x})^2 + (v_{z,y})^2] \quad (12)$$

$$\tau_{zx} - \lambda_1 v_{z,x} \tau_{xx} = \eta_0 v_{z,x} \qquad (15)$$

$$\tau_{xy} = \lambda_1 v_{x,y} \tau_{yy} = \eta_0 v_{x,y} \qquad (16)$$

$$(\tau_{xx})_{a,y} + \frac{2\lambda_1}{3} (v_{z,x})_{a,y} (\tau_{zx})_{a,y}$$

$$= \frac{2\eta_0 \lambda_2}{3} (v_{z,x})^2_{a,y} (19)$$

$$(\tau_{zz})_{a,y} - \frac{4\lambda_1}{3} (v_{z,x})_{a,y} (\tau_{zx})_{a,y} =$$

$$(\tau_{zz})_{a,y} - \frac{1}{3} (v_{z,x})_{a,y} (\tau_{zx})_{a,y} = \frac{4\eta_0 \lambda_2}{3} (v_{z,x})_{a,y}^2$$
(20)

$$(\tau_{yy})_{x,b} + \frac{2\lambda_1}{3} (v_{z,y})_{x,b} (\tau_{zy})_{x,b}$$

$$= \frac{2\eta_0 \lambda_2}{3} (v_{z,y})^2_{x,b} \quad (22)$$

$$(\tau_{zz})_{x,b} - \frac{4\lambda_1}{3} (\upsilon_{z,y})_{x,b} (\tau_{zy})_{x,b} = -\frac{4\eta_0\lambda_2}{3} (\upsilon_{z,y})^2_{x,b} \quad (23)$$

$$(\tau_{zz} - \tau_{xx})_{a,y} = [2\eta_0(\lambda_1 - \lambda_2) + 2\lambda_1^2(\tau_{xx})_{a,y}] (v_{z,x})^2_{a,y}$$
(25)

$$(\tau_{xx})_{a,y} = \frac{-\frac{2}{3} \eta_0(\lambda_1 - \lambda_2) (v_{z,x})^2_{a,y}}{1 + \frac{2}{3} \lambda_1^2 (v_{z,x})^2_{a,y}}$$

$$-(v_{z,x})_{a,y} = \sqrt{\frac{(\tau_{zz} - \tau_{xx})_{a,y}}{A - B(\tau_{zz} - \tau_{xx})_{a,y}}}$$

$$A = 2\eta_0(\lambda_1 - \lambda_2)$$

$$B = \frac{2}{2} \lambda_1^2$$
(27)
(28)

$$- (v_{z,y})_{x,b} = \sqrt{\frac{(\tau_{zz} - \tau_{yy})_{x,b}}{A - B(\tau_{zz} - \tau_{yy})_{x,b}}}$$

$$-(v_{z,x})_{a,y} = \sqrt{\frac{P_{a,y}}{A - BP_{a,y}}}$$
 (39)

$$-(v_{z,y})_{x,b} = \sqrt{\frac{P_{x,b}}{A - BP_{x,b}}}$$
 (40)

$$m = \frac{a}{V_m} \sqrt{\frac{P_{a,0}}{A - BP_{a,0}}}$$
 (46)

$$n = \frac{b}{V_m} \sqrt{\frac{P_{0,b}}{A - BP_{0,b}}}$$
 (47)

I regret these errors and the inconveniences that arose from them. It is to be noted that this correction will slightly change the computed results in Figures 12 and 13, but not affect the main conclusions given in the paper.

C. D. Han

In a Letter to the Editor from B. I. Sokolov and A. A. Kharchenko [3, 669 (1972)], lines 9 and 10 in paragraph 3 should read ... $T_r = 0.7$ to 2.6 and pressure $P_r = 0.1$ to 5....

In "Temperature Gradients in Turbulent Gas Streams" by Wu-Sun Chia and B. H. Sage [16, No. 1, 37 (1970)], Equations (2), (4), (6), and (9) should be corrected as shown below.

$$\underline{\epsilon}_m = \epsilon_m + \nu = \frac{\tau g}{\sigma \frac{du}{dy}} \tag{2}$$

$$\epsilon_m = \epsilon_m - \nu = \frac{g \frac{dP}{dx}}{\sigma \frac{d^2u}{dy^2}} - \nu \qquad (4)$$

$$\underline{\epsilon}_c = \epsilon_c + K = \frac{\overset{\circ}{q}}{C_p \sigma} \frac{dy}{dt}$$
 (6)

$$N_{\underline{Pr}} = \frac{\epsilon_m}{\epsilon_c} = \frac{C_p \tau \sigma}{\dot{q} \cdot du} \frac{dt}{du}$$
 (9)

B. H. Sage

The work reported in the R&D Note "Linearization-An Efficient Alternate for the Estimation of Parameters" by E. J. Schlossmacher was done while Schlossmacher was affiliated with the Department of Chemical Engineering, University of Puerto Rico.

Raul Chao

	-	
Ν	D	ŁX

(continued from page 1296)

(communications page 2200)		
Transfer, rate of	1121	
parameter estimation from	1073	
Transport properties, of polyatomic gases	833	
Trays, distillation,		
tions on	491	
Trioctylamine,		
extraction of mercuric		
chloride from acid	004	
chloride solution with	904	
Tubing, expansible, separation of gases		
through	1015	
Turbulence,	1010	
effect on gas absorption	169	
U		
Ultrafiltration,		
of protein	1030	
v		
77.1 11 6 1		
Velocity of sound,		
use in testing principle	430	
of correspinding states Viscometer, falling cylinder,	400	
entrance and exit effects in	146	
W		
Waste disposal, municipal,		
recovery of resources from	1089	
Water-ethanol-isopropyl		
alcohol system,	133	
activity coefficients of	133	
Water-ammonium sulfate system, secondary nucleation in		
Water-ethanol system,		
vapor-liquid equilibria of		
1 1 1 1 1 1 1 1		

into Water-potassium sulfate system, nucleation in Water clathrates, thermodynamic properties of 1220 Waves, small amplitude,

when saturated with in-

organic salt

Water-monoethanolamine mixtures,

absorption of carbon dioxide

343

647

798

surface boundary conditions Wetting behavior, of azeotropic systems

Yang-Yendall equation of 248

Zeolites, counterdiffusion of liquid hydrocarbons in 816 liquid counterdiffusion of 724 hydrocarbons in liquid sorption equilibria 720 of hydrocarbon systems in

AICHE Journal (Vol. 18, No. 6)